18.152 Final assignment

 due May 12nd 10:00 pm1. (10 points) Determine whether the following statements are true or false, and briefly verify your answer.
(A) Suppose that a smooth function $u: \mathbb{R} \times[0, T) \rightarrow \mathbb{R}$ satisfies $u_{t}=2 u_{x}$. Then, the solution u is uniquely determined by its initial data $u(x, 0) \in C^{\infty}(\mathbb{R})$.
(B) An entire smooth function $u: \mathbb{R}^{n} \times[0, T) \rightarrow \mathbb{R}$ satisfies the heat equation $u_{t}=\Delta u$ at all $(x, t) \in \mathbb{R}^{n} \times[0, T)$. Suppose that $u(x, 0)$ is compactly supported. Then, for each $t>0, u(x, t)$ is also compactly supported.
(C) An entire smooth function $u: \mathbb{R}^{n} \times[0, T) \rightarrow \mathbb{R}$ satisfies the wave equation $u_{t t}=\Delta u$ at all $(x, t) \in \mathbb{R}^{n} \times[0, T)$. Suppose that $u(x, 0)$ is compactly supported. Then, for each $t>0, u(x, t)$ is also compactly supported.
(D) Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set with smooth boundary $\partial \Omega$. Suppose that $u, v \in C^{\infty}(\Omega)$ are Dirichlet Laplace eigenfunctions such that the set $\{u \neq v\}$ has positive measure and $\|u\|_{L^{2}(\Omega)} \neq\|v\|_{L^{2}(\Omega)}$. Then, the following holds

$$
\begin{equation*}
\int_{\Omega} u(x) v(x) d x=0 \tag{1}
\end{equation*}
$$

(E) Suppose that $\Omega \subset \mathbb{R}^{n}$ is a bounded open set with smooth boundary $\partial \Omega$. Given $f, g \in C^{\infty}(\bar{\Omega})$, the elliptic equation $\Delta u+u=f$ has a smooth solution of class $C^{\infty}(\bar{\Omega})$ satisfying the Dirichlet condition $u=g$ on $\partial \Omega$.
2. (20 points) Let $\alpha \in(0,1)$ and $a_{i j}, b_{i}, c, f \in C^{\alpha}\left(\bar{B}_{2}^{+}\right)$for $i, j \in\{1, \cdots, n\}$. Also, $a_{i j}(x)=a_{j i}(x)$ holds in \bar{B}_{2}^{+}and

$$
\begin{equation*}
\left\|a_{i j}\right\|_{C^{\alpha}\left(\bar{B}_{2}^{+}\right)},\left\|b_{i}\right\|_{C^{\alpha}\left(\bar{B}_{2}^{+}\right)},\left\|c_{i j}\right\|_{C^{\alpha}\left(\bar{B}_{2}^{+}\right)} \leq \Lambda \tag{2}
\end{equation*}
$$

Moreover, there exists $\lambda>0$ such that $\lambda\|\xi\|^{2} \leq a_{i j}(x) \xi_{i} \xi_{j}$ holds for $x \in \bar{B}_{2}^{+}$and $\xi \in \mathbb{R}^{n}$. Then, show that there exists some constant $C=C(n, \alpha, \lambda, \Lambda)$ such that

$$
\begin{equation*}
\|u\|_{C^{2, \alpha}\left(\bar{B}_{1}^{+}\right)} \leq C\left(\|f\|_{C^{\alpha}\left(\bar{B}_{2}^{+}\right)}+\|u\|_{C^{0}\left(\bar{B}_{2}^{+}\right)}\right), \tag{3}
\end{equation*}
$$

holds for every $u \in C^{2, \alpha}\left(\bar{B}_{2}^{+}\right)$satisfying $f=a_{i j} u_{i j}+b_{i} u_{i}+c u$ in \bar{B}_{2}^{+}.
3. (10 points) Let Ω be a bounded open set in \mathbb{R}^{n} having the uniform exterior sphere boundary condition. Suppose that $a_{i j}, b_{i}, c, f(i, j \in\{1, \cdots, n\})$ are bounded functions defined over Ω satisfying $c(x) \leq 0,\left|a_{i j}(x)\right| \leq \Lambda,\left|b_{i}(x)\right| \leq \Lambda$ in Ω. Moreover,
there exists $\lambda>0$ such that $\lambda\|\xi\|^{2} \leq a_{i j}(x) \xi_{i} \xi_{j}$ holds for $x \in \Omega$ and $\xi \in \mathbb{R}^{n}$. Then, show that there exists some constant $C=C(n, \Omega, \lambda, \Lambda)$ such that

$$
\begin{equation*}
\sup _{\Omega}|u| \leq C \sup _{\Omega}|f|, \tag{4}
\end{equation*}
$$

holds for every $u \in D^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ satisfying $f=a_{i j} u_{i j}+b_{i} u_{i}+c u$ in Ω and $u=0$ on $\partial \Omega$.
4. (10 points) Suppose that a smooth function $u: \mathbb{R} \times[0, T) \rightarrow \mathbb{R}$ satisfies $u_{t t t}-$ $2 u_{t t x}-u_{t x x}+2 u_{x x x}=0$ at all $(x, t) \in \mathbb{R} \times[0, T)$. Moreover, $u(x, 0)=g(x)=e^{x}$, $u_{t}(x, 0)=h(x)=x+2 e^{x}$, and $u_{t t}(x, 0)=k(x)=4 e^{x}+2$ hold for all $x \in \mathbb{R}$. Find all possible solutions.

HinT: $\partial_{t}^{3}-2 \partial_{t}^{2} \partial_{x}-\partial_{t} \partial_{x}^{2}+2 \partial_{x}^{3}=\left(\partial_{t}-2 \partial_{x}\right)\left(\partial_{t}-\partial_{x}\right)\left(\partial_{t}+\partial_{x}\right)$.
5. Suppose that $\Omega \subset \mathbb{R}^{n}$ is a bounded open set with smooth boundary $\partial \Omega$. Let $\left\{\left(w_{i}, \lambda_{i}\right)\right\}_{i=1}^{\infty} \subset C_{0}^{\infty}(\Omega) \times \mathbb{R}$ be the sequence pairs of the Dirichlet Laplace eigenfunction and eigenvalue satisfying $\left\|w_{i}\right\|_{L^{2}(\Omega)}=1,0<\lambda_{i} \leq \lambda_{i+1}, \lim _{i \rightarrow+\infty} \lambda_{i}=+\infty$, $\left\langle w_{i}, w_{j}\right\rangle_{L^{2}(\Omega)}=\delta_{i j}$, and $\left\{w_{i}\right\}_{i=1}^{\infty}$ spans $L^{2}(\Omega)$.

Suppose that a smooth function $u \in C^{\infty}(\bar{\Omega} \times[0, T))$ satisfies the damped wave equation

$$
\begin{equation*}
u_{t t}+u_{t}=\Delta u-u \tag{5}
\end{equation*}
$$

in $\Omega \times[0, T)$ and the Dirichlet condition $u=0$ on $\partial \Omega \times[0, T)$.
(A) (3 points) Show that the smooth function $a_{i}(t)=\left\langle u(x, t), w_{i}(x)\right\rangle_{L^{2}(\Omega)}$ satisfies

$$
\begin{equation*}
a_{i}^{\prime \prime}+a_{i}^{\prime}+\left(\lambda_{i}+1\right) a_{i}=0 \tag{6}
\end{equation*}
$$

(B) (2 points) The ODE theory implies that the solution $a_{i}(t)$ to (6) must be

$$
\begin{equation*}
a_{i}(t)=\alpha_{i} e^{-\frac{t}{2}} \cos \left(\mu_{i} t\right)+\beta_{i} e^{-\frac{t}{2}} \sin \left(\mu_{i} t\right) \tag{7}
\end{equation*}
$$

for some constants $\alpha_{i}, \beta_{i} \in \mathbb{R}$, where $\mu_{i}=\sqrt{\lambda_{i}+\frac{3}{4}}$.
Determine α_{i} and β_{i} in terms of $g(x)=u(x, 0), h(x)=u_{t}(x, 0), w_{i}(x)$, and μ_{i}.
(C) (5 points) Show that $\|u\|_{H^{1}(\Omega)} \leq C e^{-\frac{t}{2}}$ for some constant C depending on g, h and their derivatives.
6. Suppose that a smooth function $u \in C^{\infty}\left(\mathbb{R}^{n} \times[0, T)\right)$ satisfies the damped wave equation

$$
\begin{equation*}
u_{t t}+u_{t}=\Delta u-u \tag{8}
\end{equation*}
$$

in $\mathbb{R}^{n} \times[0, T)$.
(A) (10 points) Show that the following energy is non-increasing

$$
\begin{equation*}
E(t)=\frac{1}{2} \int_{B\left(R-t ; x_{0}\right)}|\nabla u|^{2}+\left|u_{t}\right|^{2}+u^{2} d x \tag{9}
\end{equation*}
$$

where $B\left(R-t ; x_{0}\right)=\left\{x \in \mathbb{R}^{n}:\left|x-x_{0}\right| \leq R-t\right\}, R \in \mathbb{R}, x_{0} \in \mathbb{R}^{n}$.
(B) (5 points) Suppose that the initial data $g(x)=u(x, 0)$ and $h(x)=u_{t}(x, 0)$ are compactly supported. Show that $u(x, t)$ is also compactly supported for each $t \geq 0$.
(C) (10 points) Suppose that the initial data $g(x)=u(x, 0)$ and $h(x)=u_{t}(x, 0)$ are compactly supported. We define the energy $J(t)$ by

$$
\begin{equation*}
J(t)=\frac{1}{2} \int_{\mathbb{R}^{n}}|\nabla u|^{2}+\left|u_{t}\right|^{2}+u^{2} d x+\frac{1}{10} \int_{\mathbb{R}^{n}} u u_{t} d x \tag{10}
\end{equation*}
$$

Show that $J(t) \geq \frac{1}{10}\|u\|_{H^{1}\left(\mathbb{R}^{n}\right)}^{2}$ and $J^{\prime}+\frac{1}{10} J \leq 0$. Verify $\|u\|_{H^{1}\left(\mathbb{R}^{n}\right)} \leq C e^{-\frac{t}{20}}$ for some constant C.
7. Given a function $g \in C^{\infty}([0, \pi])$ with $g(0)=g(\pi)=0$, we denote by $X_{g} \subset$ $L^{\infty}(\Omega)$ the set of smooth uniformly bounded functions $u(x, y)=u(r \cos \theta, r \sin \theta)$ satisfying

$$
\begin{equation*}
0=\Delta u+2|x|^{-2} u=\partial_{r r}^{2} u+\frac{\partial_{r} u}{r}+\frac{\partial_{\theta \theta} u}{r^{2}}+\frac{2 u}{r^{2}} \tag{11}
\end{equation*}
$$

in $\Omega=\{(r \cos \theta, r \sin \theta): 0 \leq \theta \leq \pi, r \geq 1\} \subset \mathbb{R}^{2}$, and satisfying the boundary condition

$$
\begin{equation*}
u(\cos \theta, \sin \theta)=g(\theta) \quad \text { for } \quad \theta \in[0, \pi], \quad u(r, 0)=u(-r, 0)=0 \quad \text { for } \quad r \geq 1 \tag{12}
\end{equation*}
$$

Given $u \in X_{g}$ and $m \in \mathbb{N}$, we define a smooth function $a_{m} \in C^{\infty}([1, \infty))$.

$$
\begin{equation*}
a_{m}(r)=2^{\frac{1}{2}} \pi^{-\frac{1}{2}} \int_{0}^{\pi} u(r \cos \theta, r \sin \theta) \sin (m \theta) d \theta \tag{13}
\end{equation*}
$$

We know that $\left\{2^{\frac{1}{2}} \pi^{-\frac{1}{2}} \sin (m \theta)\right\}_{m=1}^{\infty}$ form an orthogonal basis of $L^{2}((0, \pi))$. Thus,

$$
\begin{equation*}
u(r \cos \theta, r \sin \theta)=2^{\frac{1}{2}} \pi^{-\frac{1}{2}} \sum_{m=1}^{\infty} a_{m}(r) \sin (m \theta) \tag{14}
\end{equation*}
$$

(A) (2 points) Show that a_{m} satisfies $\left|a_{m}\right| \leq C$ for some constant C and the following equation

$$
\begin{equation*}
a_{m}^{\prime \prime}+r^{-1} a_{m}^{\prime}+r^{-2}\left(2-m^{2}\right) a_{m}=0 \tag{15}
\end{equation*}
$$

(B) (6 points) The ODE theory implies that the solutions to (15) must be

$$
\begin{equation*}
a_{1}(r)=\alpha_{1} \cos (\log r)+\beta_{1} \sin (\log r) \tag{16}
\end{equation*}
$$

for some constants $\alpha_{1}, \beta_{1} \in \mathbb{R}$. Moreover, for each $k \geq 2$

$$
\begin{equation*}
a_{k}(r)=\alpha_{k} r^{-\sqrt{k^{2}-2}}+\beta_{k} r^{\sqrt{k^{2}-2}} \tag{17}
\end{equation*}
$$

for some constants $\alpha_{k}, \beta_{k} \in \mathbb{R}$.
Determine α_{m}, β_{m} except β_{1}. What are the possible β_{1} ?
(C) (7 points) Let $X_{g}^{0} \subset X_{g}$ consist of the solutions u which converges to 0 as $r \rightarrow+\infty$. What are the possible sizes of the set X_{g}^{0} ? Provide the conditions of g determining the size of X_{g}^{0}.
8. Ω is a smooth bounded open domain in \mathbb{R}^{n}. We would like to solve the semi-linear elliptic equation

$$
\begin{equation*}
\Delta u=u^{3} \quad \text { in } \Omega \tag{18}
\end{equation*}
$$

for the Dirichlet condition $u=g$ on $\partial \Omega$, where $g \in C^{\infty}(\bar{\Omega})$ and $\|g\|_{L^{\infty}}=\epsilon$ is small.
(A) (3 points) Briefly verify that there exists a unique harmonic function $v_{1} \in$ $C^{\infty}(\bar{\Omega})$ such that $v_{1}=g$ on $\partial \Omega$. Moreover, (by using the maximum principle) show that

$$
\begin{equation*}
\sup _{\Omega}\left|v_{1}\right| \leq \sup _{\partial \Omega}|g| . \tag{19}
\end{equation*}
$$

(B) (7 points) Briefly verify that given $v, f \in C^{\infty}(\bar{\Omega})$ the linear equation $\Delta w-$ $3 v^{2} w=f$ has a unique solution $w \in C^{\infty}(\Omega)$ satisfying $w=0$ on $\partial \Omega$. Moreover, (by using the comparison principle and barriers) show that

$$
\begin{equation*}
\sup _{\Omega}|w| \leq M \sup _{\Omega}|f|, \tag{20}
\end{equation*}
$$

for some M depending on n, Ω.
Hint: Use a paraboloid as a barrier.
(C) (3 points) Let $v_{2} \in C^{\infty}(\bar{\Omega})$ be the solution to $\Delta v_{2}-3 v_{1}^{2} v_{2}=f_{2}=v_{1}^{3}$ satisfying $v_{2}=0$ on $\partial \Omega$. Show that there exists small ϵ such that

$$
\begin{equation*}
\sup _{\Omega}\left|v_{2}\right| \leq M \sup _{\Omega}\left|v_{1}\right|^{3} \leq \epsilon^{2} \tag{21}
\end{equation*}
$$

(D) (4 points) For $k \geq 3$, we let $v_{k+1} \in C^{\infty}(\bar{\Omega})$ be the solution to
$\Delta v_{k+1}-3\left(\sum_{m=1}^{k} v_{m}\right)^{2} v_{k+1}=f_{k+1}=3\left(\sum_{m=1}^{k-1} v_{m}\right) v_{k}^{2}+v_{k}^{3}=\left(\sum_{m=1}^{k} v_{m}\right)^{3}-\sum_{m=1}^{k} \Delta v_{m}$,
satisfying $v_{k+1}=0$ on $\partial \Omega$. Show that there exists small ϵ such that

$$
\begin{equation*}
\sup _{\Omega}\left|v_{k+1}\right| \leq \epsilon^{k+1} \tag{23}
\end{equation*}
$$

(E) (3 points) Let $u_{k}=\sum_{m=1}^{k} v_{m}$ and $\bar{u}=\lim _{k \rightarrow+\infty} u_{k}$. Show that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sup _{\Omega}\left|\Delta u_{k}-\bar{u}^{3}\right|=0 \tag{24}
\end{equation*}
$$

9. Suppose that $u: \mathbb{R}^{n} \times[0,+\infty)$ is a smooth function such that $u(x, t)=u\left(x+e_{i}, t\right)$ holds for every $i \in\{1, \cdots, n\}$ and the following equation holds

$$
\begin{equation*}
u_{t}=\Delta u-\sum_{i, j} \frac{u_{i} u_{j} u_{i j}}{1+|\nabla u|^{2}} \tag{25}
\end{equation*}
$$

(A) (5 points) Show that the following holds for $t \geq 0$.

$$
\begin{equation*}
|\nabla u(x, t)|^{2} \leq \sup _{x \in \mathbb{R}^{n}}|\nabla u(x, 0)|^{2} \tag{26}
\end{equation*}
$$

Hint: Maximum principle.
(B) (5 points) Show that the following holds for $t \geq 0$.

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} \sqrt{1+|\nabla u(x, t)|^{2}} d x \leq 0 \tag{27}
\end{equation*}
$$

where $\Omega=(0,1)^{n} \subset \mathbb{R}^{n}$.
10. (10 points) Let Ω be a convex bounded open set in \mathbb{R}^{n} with smooth boundary. Suppose that $u \in C^{\infty}(\Omega \times[0,+\infty))$ satisfies $u_{t}=\Delta u$ in $\bar{\Omega} \times[0,+\infty)$ and $u=g$ on $\partial \Omega \times[0,+\infty)$, where $g \in C^{\infty}(\bar{\Omega})$. Let $w: \bar{\Omega} \rightarrow \mathbb{R}$ be the harmonic function satisfying $w=g$ on $\partial \Omega$. Show that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \sup _{x \in \Omega}|u(x, t)-w(x)|=0 \tag{28}
\end{equation*}
$$

Hint: Problem set 1.

