18.152 Final assignment due May 12nd 10:00 pm

1. (10 points) Determine whether the following statements are true or false, and briefly verify your answer.

(A) Suppose that a smooth function $u : \mathbb{R} \times [0,T) \to \mathbb{R}$ satisfies $u_t = 2u_x$. Then, the solution u is uniquely determined by its initial data $u(x,0) \in C^{\infty}(\mathbb{R})$.

(B) An entire smooth function $u : \mathbb{R}^n \times [0,T) \to \mathbb{R}$ satisfies the heat equation $u_t = \Delta u$ at all $(x,t) \in \mathbb{R}^n \times [0,T)$. Suppose that u(x,0) is compactly supported. Then, for each t > 0, u(x,t) is also compactly supported.

(C) An entire smooth function $u : \mathbb{R}^n \times [0,T) \to \mathbb{R}$ satisfies the wave equation $u_{tt} = \Delta u$ at all $(x,t) \in \mathbb{R}^n \times [0,T)$. Suppose that u(x,0) is compactly supported. Then, for each t > 0, u(x,t) is also compactly supported.

(D) Let $\Omega \subset \mathbb{R}^n$ be a bounded open set with smooth boundary $\partial\Omega$. Suppose that $u, v \in C^{\infty}(\Omega)$ are Dirichlet Laplace eigenfunctions such that the set $\{u \neq v\}$ has positive measure and $\|u\|_{L^2(\Omega)} \neq \|v\|_{L^2(\Omega)}$. Then, the following holds

(1)
$$\int_{\Omega} u(x)v(x)dx = 0.$$

(E) Suppose that $\Omega \subset \mathbb{R}^n$ is a bounded open set with smooth boundary $\partial\Omega$. Given $f, g \in C^{\infty}(\overline{\Omega})$, the elliptic equation $\Delta u + u = f$ has a smooth solution of class $C^{\infty}(\overline{\Omega})$ satisfying the Dirichlet condition u = g on $\partial\Omega$.

2. (20 points) Let $\alpha \in (0,1)$ and $a_{ij}, b_i, c, f \in C^{\alpha}(\overline{B}_2^+)$ for $i, j \in \{1, \dots, n\}$. Also, $a_{ij}(x) = a_{ji}(x)$ holds in \overline{B}_2^+ and

(2)
$$||a_{ij}||_{C^{\alpha}(\overline{B}_{2}^{+})}, ||b_{i}||_{C^{\alpha}(\overline{B}_{2}^{+})}, ||c_{ij}||_{C^{\alpha}(\overline{B}_{2}^{+})} \leq \Lambda.$$

Moreover, there exists $\lambda > 0$ such that $\lambda \|\xi\|^2 \leq a_{ij}(x)\xi_i\xi_j$ holds for $x \in \overline{B}_2^+$ and $\xi \in \mathbb{R}^n$. Then, show that there exists some constant $C = C(n, \alpha, \lambda, \Lambda)$ such that

(3)
$$\|u\|_{C^{2,\alpha}(\overline{B}_{1}^{+})} \leq C\left(\|f\|_{C^{\alpha}(\overline{B}_{2}^{+})} + \|u\|_{C^{0}(\overline{B}_{2}^{+})}\right),$$

holds for every $u \in C^{2,\alpha}(\overline{B}_2^+)$ satisfying $f = a_{ij}u_{ij} + b_iu_i + cu$ in \overline{B}_2^+ .

3. (10 points) Let Ω be a bounded open set in \mathbb{R}^n having the uniform exterior sphere boundary condition. Suppose that a_{ij}, b_i, c, f $(i, j \in \{1, \dots, n\})$ are bounded functions defined over Ω satisfying $c(x) \leq 0$, $|a_{ij}(x)| \leq \Lambda$, $|b_i(x)| \leq \Lambda$ in Ω . Moreover, there exists $\lambda > 0$ such that $\lambda \|\xi\|^2 \leq a_{ij}(x)\xi_i\xi_j$ holds for $x \in \Omega$ and $\xi \in \mathbb{R}^n$. Then, show that there exists some constant $C = C(n, \Omega, \lambda, \Lambda)$ such that

(4)
$$\sup_{\Omega} |u| \le C \sup_{\Omega} |f|$$

holds for every $u \in D^2(\Omega) \cap C^0(\overline{\Omega})$ satisfying $f = a_{ij}u_{ij} + b_iu_i + cu$ in Ω and u = 0 on $\partial\Omega$.

4. (10 points) Suppose that a smooth function $u : \mathbb{R} \times [0,T) \to \mathbb{R}$ satisfies $u_{ttt} - 2u_{ttx} - u_{txx} + 2u_{xxx} = 0$ at all $(x,t) \in \mathbb{R} \times [0,T)$. Moreover, $u(x,0) = g(x) = e^x$, $u_t(x,0) = h(x) = x + 2e^x$, and $u_{tt}(x,0) = k(x) = 4e^x + 2$ hold for all $x \in \mathbb{R}$. Find all possible solutions.

HINT:
$$\partial_t^3 - 2\partial_t^2 \partial_x - \partial_t \partial_x^2 + 2\partial_x^3 = (\partial_t - 2\partial_x)(\partial_t - \partial_x)(\partial_t + \partial_x)$$

5. Suppose that $\Omega \subset \mathbb{R}^n$ is a bounded open set with smooth boundary $\partial\Omega$. Let $\{(w_i, \lambda_i)\}_{i=1}^{\infty} \subset C_0^{\infty}(\Omega) \times \mathbb{R}$ be the sequence pairs of the Dirichlet Laplace eigenfunction and eigenvalue satisfying $||w_i||_{L^2(\Omega)} = 1$, $0 < \lambda_i \leq \lambda_{i+1}$, $\lim_{i \to +\infty} \lambda_i = +\infty$, $\langle w_i, w_j \rangle_{L^2(\Omega)} = \delta_{ij}$, and $\{w_i\}_{i=1}^{\infty}$ spans $L^2(\Omega)$.

Suppose that a smooth function $u \in C^{\infty}(\overline{\Omega} \times [0,T))$ satisfies the *damped wave* equation

(5)
$$u_{tt} + u_t = \Delta u - u$$

in $\Omega \times [0,T)$ and the Dirichlet condition u = 0 on $\partial \Omega \times [0,T)$.

(A) (3 points) Show that the smooth function $a_i(t) = \langle u(x,t), w_i(x) \rangle_{L^2(\Omega)}$ satisfies (6) $a''_i + a'_i + (\lambda_i + 1)a_i = 0.$

(B) (2 points) The ODE theory implies that the solution $a_i(t)$ to (6) must be

(7)
$$a_i(t) = \alpha_i e^{-\frac{t}{2}} \cos(\mu_i t) + \beta_i e^{-\frac{t}{2}} \sin(\mu_i t)$$

for some constants $\alpha_i, \beta_i \in \mathbb{R}$, where $\mu_i = \sqrt{\lambda_i + \frac{3}{4}}$. Determine α_i and β_i in terms of $g(x) = u(x, 0), h(x) = u_t(x, 0), w_i(x)$, and μ_i .

(C) (5 points) Show that $||u||_{H^1(\Omega)} \leq Ce^{-\frac{t}{2}}$ for some constant C depending on g, h and their derivatives.

6. Suppose that a smooth function $u \in C^{\infty}(\mathbb{R}^n \times [0,T))$ satisfies the damped wave equation

(8)
$$u_{tt} + u_t = \Delta u - u$$

in $\mathbb{R}^n \times [0, T)$.

(A) (10 points) Show that the following energy is non-increasing

(9)
$$E(t) = \frac{1}{2} \int_{B(R-t;x_0)} |\nabla u|^2 + |u_t|^2 + u^2 dx$$

where $B(R-t; x_0) = \{x \in \mathbb{R}^n : |x - x_0| \le R - t\}, R \in \mathbb{R}, x_0 \in \mathbb{R}^n.$

(B) (5 points) Suppose that the initial data g(x) = u(x, 0) and $h(x) = u_t(x, 0)$ are compactly supported. Show that u(x, t) is also compactly supported for each $t \ge 0$.

(C) (10 points) Suppose that the initial data g(x) = u(x, 0) and $h(x) = u_t(x, 0)$ are compactly supported. We define the energy J(t) by

(10)
$$J(t) = \frac{1}{2} \int_{\mathbb{R}^n} |\nabla u|^2 + |u_t|^2 + u^2 dx + \frac{1}{10} \int_{\mathbb{R}^n} u u_t \, dx.$$

Show that $J(t) \geq \frac{1}{10} \|u\|_{H^1(\mathbb{R}^n)}^2$ and $J' + \frac{1}{10}J \leq 0$. Verify $\|u\|_{H^1(\mathbb{R}^n)} \leq Ce^{-\frac{t}{20}}$ for some constant C.

7. Given a function $g \in C^{\infty}([0,\pi])$ with $g(0) = g(\pi) = 0$, we denote by $X_g \subset L^{\infty}(\Omega)$ the set of smooth uniformly bounded functions $u(x,y) = u(r\cos\theta, r\sin\theta)$ satisfying

(11)
$$0 = \Delta u + 2|x|^{-2}u = \partial_{rr}^2 u + \frac{\partial_r u}{r} + \frac{\partial_{\theta\theta} u}{r^2} + \frac{2u}{r^2}$$

in $\Omega = \{(r\cos\theta, r\sin\theta) : 0 \le \theta \le \pi, r \ge 1\} \subset \mathbb{R}^2$, and satisfying the boundary condition

(12)
$$u(\cos\theta,\sin\theta) = g(\theta)$$
 for $\theta \in [0,\pi]$, $u(r,0) = u(-r,0) = 0$ for $r \ge 1$.

Given $u \in X_g$ and $m \in \mathbb{N}$, we define a smooth function $a_m \in C^{\infty}([1,\infty))$.

(13)
$$a_m(r) = 2^{\frac{1}{2}} \pi^{-\frac{1}{2}} \int_0^\pi u(r\cos\theta, r\sin\theta)\sin(m\theta)d\theta$$

We know that $\{2^{\frac{1}{2}}\pi^{-\frac{1}{2}}\sin(m\theta)\}_{m=1}^{\infty}$ form an orthogonal basis of $L^2((0,\pi))$. Thus,

(14)
$$u(r\cos\theta, r\sin\theta) = 2^{\frac{1}{2}} \pi^{-\frac{1}{2}} \sum_{m=1}^{\infty} a_m(r)\sin(m\theta).$$

(A) (2 points) Show that a_m satisfies $|a_m| \leq C$ for some constant C and the following equation

(15)
$$a''_m + r^{-1}a'_m + r^{-2}(2-m^2)a_m = 0.$$

(B) (6 points) The ODE theory implies that the solutions to (15) must be

(16)
$$a_1(r) = \alpha_1 \cos(\log r) + \beta_1 \sin(\log r),$$

for some constants $\alpha_1, \beta_1 \in \mathbb{R}$. Moreover, for each $k \geq 2$

(17) $a_k(r) = \alpha_k r^{-\sqrt{k^2 - 2}} + \beta_k r^{\sqrt{k^2 - 2}}.$

for some constants $\alpha_k, \beta_k \in \mathbb{R}$.

Determine α_m, β_m except β_1 . What are the possible β_1 ?

(C) (7 points) Let $X_g^0 \subset X_g$ consist of the solutions u which converges to 0 as $r \to +\infty$. What are the possible sizes of the set X_g^0 ? Provide the conditions of g determining the size of X_g^0 .

8. Ω is a smooth bounded open domain in $\mathbb{R}^n.$ We would like to solve the semi-linear elliptic equation

(18)
$$\Delta u = u^3 \qquad \text{in } \Omega.$$

for the Dirichlet condition u = g on $\partial \Omega$, where $g \in C^{\infty}(\overline{\Omega})$ and $||g||_{L^{\infty}} = \epsilon$ is small.

(A) (3 points) Briefly verify that there exists a unique harmonic function $v_1 \in C^{\infty}(\overline{\Omega})$ such that $v_1 = g$ on $\partial\Omega$. Moreover, (by using the maximum principle) show that

(19)
$$\sup_{\Omega} |v_1| \le \sup_{\partial \Omega} |g|.$$

(B) (7 points) Briefly verify that given $v, f \in C^{\infty}(\overline{\Omega})$ the linear equation $\Delta w - 3v^2w = f$ has a unique solution $w \in C^{\infty}(\Omega)$ satisfying w = 0 on $\partial\Omega$. Moreover, (by using the comparison principle and barriers) show that

(20)
$$\sup_{\Omega} |w| \le M \sup_{\Omega} |f|,$$

for some M depending on n, Ω .

HINT: Use a paraboloid as a barrier.

(C) (3 points) Let $v_2 \in C^{\infty}(\overline{\Omega})$ be the solution to $\Delta v_2 - 3v_1^2 v_2 = f_2 = v_1^3$ satisfying $v_2 = 0$ on $\partial\Omega$. Show that there exists small ϵ such that

(21)
$$\sup_{\Omega} |v_2| \le M \sup_{\Omega} |v_1|^3 \le \epsilon^2.$$

(D) (4 points) For $k \geq 3$, we let $v_{k+1} \in C^{\infty}(\overline{\Omega})$ be the solution to (22)

$$\Delta v_{k+1} - 3\left(\sum_{m=1}^{k} v_m\right)^2 v_{k+1} = f_{k+1} = 3\left(\sum_{m=1}^{k-1} v_m\right) v_k^2 + v_k^3 = \left(\sum_{m=1}^{k} v_m\right)^3 - \sum_{m=1}^{k} \Delta v_m,$$

satisfying $v_{k+1} = 0$ on $\partial \Omega$. Show that there exists small ϵ such that

(23)
$$\sup_{\Omega} |v_{k+1}| \le \epsilon^{k+1}.$$

(E) (3 points) Let $u_k = \sum_{m=1}^k v_m$ and $\bar{u} = \lim_{k \to +\infty} u_k$. Show that (24) $\lim_{k \to \infty} \sup_{\Omega} \left| \Delta u_k - \bar{u}^3 \right| = 0.$

9. Suppose that $u : \mathbb{R}^n \times [0, +\infty)$ is a smooth function such that $u(x, t) = u(x+e_i, t)$ holds for every $i \in \{1, \dots, n\}$ and the following equation holds

(25)
$$u_t = \Delta u - \sum_{i,j} \frac{u_i u_j u_{ij}}{1 + |\nabla u|^2}.$$

(A) (5 points) Show that the following holds for $t \ge 0$. (26) $|\nabla u(x,t)|^2 \le \sup_{x \in \mathbb{R}^n} |\nabla u(x,0)|^2$.

HINT: Maximum principle.

(B) (5 points) Show that the following holds for $t \ge 0$.

(27)
$$\frac{d}{dt} \int_{\Omega} \sqrt{1 + |\nabla u(x,t)|^2} \, dx \le 0,$$

where $\Omega = (0, 1)^n \subset \mathbb{R}^n$.

10. (10 points) Let Ω be a convex bounded open set in \mathbb{R}^n with smooth boundary. Suppose that $u \in C^{\infty}(\Omega \times [0, +\infty))$ satisfies $u_t = \Delta u$ in $\overline{\Omega} \times [0, +\infty)$ and u = g on $\partial\Omega \times [0, +\infty)$, where $g \in C^{\infty}(\overline{\Omega})$. Let $w : \overline{\Omega} \to \mathbb{R}$ be the harmonic function satisfying w = g on $\partial\Omega$. Show that

(28)
$$\lim_{t \to +\infty} \sup_{x \in \Omega} |u(x,t) - w(x)| = 0.$$

HINT: Problem set 1.